

## HELLO!

## I am HR

## Mokhtarinia

I am here because I love to give presentations.
You can find me at:
@HRMpt
hrmokhtarinia@yahoo.com

Motion Analysis Indications in Ergonomics

- Basic concepts of Kinematics
- Variables
- Bioinstrumentation
- Data gathering
- Data analysis
- Provide study samples



## 3 Rigid Body Mechanic



## 4 Basic Kinematic Concepts

- Variables for Describing Motion
- Reference Systems for Describing Motion of the Human Body and Its Segments
- Spatial and temporal characteristics
- Spatial (where, how far, what direction)
- Temporal (how long, how fast,)
- Qualitative or quantitative
- Linear \& angular motion


## 5 Kinematic Variables

- Time
- Position
- Displacement \& distance
- Velocity \& speed
- Acceleration

6 Time - Temporal Analysis

- WHEN?
- HOW OFTEN?
- IN WHAT ORDER?
- HOW LONG?
- Most basic analysis
- Examples:
- Cadence
- Stride time
- Temporal patterning


7 Time - Temporal Analysis


## Position Analysis

Lumbar spine curvatures during squat and stoop lifting. Lumbar curvature was changed from the kyphosis to the lordosis about $50 \%$ in the squat lifting, and $60 \%$ in the stoop lifting regardless of weights.

- Where?
- position - location in space relative to some reference point
- Linear position (s)
- x,y,z coordinates
- Angular position ( $\boxtimes$ )
- Angle relative to the zero degree
- Units (meter or degree)






## 9 Displacement \& Distance

- Displacement $(\Delta \mathrm{s}, \Delta \theta)$
- Final change in position
- Vector quantity
- Angular or transitional
- Distance ( $\Delta \mathrm{p}, \phi$ )
- Sum of all changes in position
- Scalar quantity
- units ( $\mathrm{m},{ }^{\circ}$ )

Displacement (motion): 5 km to the northeast Distance: 7 km


## 10 Velocity \& Acceleration

## HOW FAST?

## HOW QUICKLY IS

## VELOCITY CHANGING?

- Acceleration (a, $\alpha$ )
- Vector quantity
- $\Delta$ velocity $\div$ time
- Units ( $\mathrm{m} \cdot \mathrm{s}^{-2},{ }^{0} \cdot \mathrm{~s}^{-2}$ )
- Insight into forces/torques

11 Reference systems


Linear

## 12 Reference Systems: Linear



## 13

Angular: Absolute Reference Systems


## 14 Angular: Relative Reference Systems

- Relative segment to adjacent segment
- Angle between two segment
- In ab.ref zero point is fixed but in rel.ref may be not



## 15 What we see in the LAB



## Bio-instruments for Motion analysis

## 17 Instruments History

- Motion tracking or motion capture started as a photogrammetric analysis in the 1970s
- Since the 20th century the performer has to wear markers near each joint to identify the motion by the positions or angles between the markers.
- Acoustic, inertial, LED, magnetic or reflective markers, or combinations
- Optical systems


## 18 Instruments History

- Photography
- Motion trackers
- Motion analysis systems or Tracking or motion capture
- Optical systems
- Goniometers
- Electrogoniometers
- Accelerometres


## 19 Optical Motion Analysis systems

- Data captured from sensors to triangulate the 3D position of a subject between two or more cameras
- These systems produce data with three degrees of freedom for each marker,
- Typically a system will consist of around 2 to 48 cameras.
- Markers
- Active: one LED at a time very quickly or multiple LEDs
- Passive: markers coated with a retroreflective material



## Data gathering procedures with Motion Analysis systems

Motion Analysis LAB


## 23 Data Gathering Procedures

- Calibrations
- Landmark Placement
- Data gathering
- Data reduction and Clear
- Modeling
- Calculating the angles


## 24 Calibration

- Statics calibration
- Dynamic Calibration
- 



25 Calibration Devices: Wand

## 26 Landmark Placement


■



29 Check the Data

- Repetition Trials
- Missing values
- Interpolation for miss data if possible
- Data reduction and clear data



## Interpolation (Linear)







## 35 Calculation of angles from data

- Absolute angle
- For each segment two marker is necessary
- Horizontal equal to 0 degree
- All measure is in ccw
- In black line



## Absolute Angles:

To determine absolute joint angles, you need to define a reference system first. Here, we will choose the distal joint as our origin $(0,0)$, and calculate the absolute segment (foot, shank, thigh, and trunk) angles from the right horizontal. Mathematically, the absolute angle can be calculated using the following trigonometric relationship:

$$
\tan (\theta)=\left(y_{\text {proximal }}-y_{\text {distal }}\right) /\left(x_{\text {proximal }}-x_{\text {distalal }}\right)
$$

taking the inverse tangent of both sides gives you:

$$
\theta=\tan ^{-1}\left(\left(\mathrm{y}_{\text {proximal }}-\mathrm{y}_{\text {distal }}\right) /\left(\mathrm{x}_{\text {proximal }}-\mathrm{x}_{\text {distalal }}\right)\right)
$$



## Calculation of angles from data

- Absolute angle
- For each segment two marker is necessary
- Horizontal equal to 0 degree
- All measure is in ccw
- In black line
- Joint angle
- the included angle between the longitudinal axes of two adjacent segments
- Knee ext is when 0 deg flex
- In blue line

$$
\begin{aligned}
& \theta_{\text {hip }}=\theta_{\text {trunk }}+\left(180-\theta_{\text {thigh }}\right) \\
& \theta_{\text {knee }}=\theta_{\text {shank }}+\left(180-\theta_{\text {thigh }}\right) \\
& \theta_{\text {ankle }}=\theta_{\text {shank }}+\left(180-\theta_{\text {foot }}\right)
\end{aligned}
$$




$$
\begin{aligned}
& \theta_{\text {hip }}=\theta_{\text {trunk }}+\left(180-\theta_{\text {thigh }}\right) \\
& \theta_{\text {knee }}=\theta_{\text {shank }}+\left(180-\theta_{\text {thigh }}\right) \\
& \theta_{\text {ankle }}=\theta_{\text {shank }}+\left(180-\theta_{\text {foot }}\right)
\end{aligned}
$$



Clipboard
K12
K12
$\checkmark$
$: \times \vee f x$
$=$ ATAN2(F12-C12,E12-B12)

|  | A | B | c | D | E | F | G | H | 1 | J | K | L | M | N |  | 0 | P | Q | R | s | T | u | v | w | $\triangle$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | SLL |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2 | Date: | 40203 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 3 | Time: | 0.586609 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 4 | Type: | dynamic |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 5 | Descriptio |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 6 | Notes: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 7 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 8 | TRAJECTO | ORIES |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 9 |  | 0 Hz |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 10 |  | RTHI |  |  | RKNE |  |  |  |  |  | ARCtang | degree |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 11 | Field \# | x | Y | z | x | Y | z |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 12 |  | $1-447.608$ | -26.8141 | 679.7376 | -478.385 | -27.6172 | 505.6722 |  |  |  | -1.59689 | -91.4949 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 13 |  | $2-447.679$ | -26.1868 | 679.606 | -478.416 | -27.1458 | 505.6074 |  |  |  | -1.60198 | -91.787 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 14 |  | $3-447.747$ | -25.5856 | 679.4804 | -478.449 | -26.6945 | 505.5466 |  |  |  | -1.6069 | -92.0684 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 15 |  | $4-447.812$ | -25.0106 | 679.3606 | -478.481 | -26.2633 | 505.4897 |  |  |  | -1.61162 | -92.3391 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 16 |  | $5-447.876$ | -24.4617 | 679.2469 | $-478.513$ | -25.8524 | 505.4367 |  |  |  | -1.61615 | -92.5988 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 17 |  | $6-447.937$ | -23.939 | 679.139 | -478.545 | -25.4615 | 505.3877 |  |  |  | -1.6205 | -92.8476 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 18 |  | $7-447.995$ | -23.4425 | 679.0371 | -478.578 | -25.091 | 505.3427 |  |  |  | -1.62464 | -93.0853 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 19 |  | $8-448.051$ | -22.9723 | 678.9412 | -478.611 | -24.7407 | 505.3016 |  |  |  | -1.6286 | -93.3118 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 20 |  | $9-448.105$ | -22.5286 | 678.8512 | -478.643 | -24.4108 | 505.2645 |  |  |  | -1.63235 | -93.5269 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 21 |  | $10-448.156$ | -22.1114 | 678.7671 | -478.676 | -24.1015 | 505.2314 |  |  |  | -1.63591 | -93.7307 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 22 |  | $11-448.204$ | -21.7212 | 678.6891 | -478.709 | -23.813 | 505.2023 |  |  |  | -1.63926 | -93.9229 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 23 |  | $12-448.25$ | -21.3581 | 678.617 | -478.742 | -23.5456 | 505.1771 |  |  |  | -1.64242 | -94.1035 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 24 |  | $13-448.294$ | -21.0226 | 678.551 | -478.774 | -23.2996 | 505.1561 |  |  |  | -1.64536 | -94.2723 |  |  |  |  |  |  |  |  |  |  |  |  | $\checkmark$ |
| $\because$ | $\bigcirc$ | Sheet1 | ( + |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | $\bullet$ |  |

40 Calculation of velocity

- Coordinate and smooth data
$\stackrel{V}{\triangleright}=\frac{\Delta X}{\Delta T} \quad \Delta X=x_{i+1}-x_{i}$
- This velocity does not represented $v$ at either of sample time.
$\triangleright$ So, $\quad v_{x i}=\frac{x_{i+1}-x_{i-1}}{2 \Delta t}$
$\triangleright \quad$ And $\quad A_{x i}=\frac{v_{x i+1}-v_{x i-1}}{2 \Delta t}$



## Samples: Indication in Ergonomics studies

リ

# Relationships Between Trunk Movement Patterns During Lifting Tasks Compared With Unloaded Extension From a Flexed Posture 

Yuta Ogata, MS, ${ }^{\text {a }}$ Masaya Anan, PhD, ${ }^{\text {b }}$ Makoto Takahashi, PhD, ${ }^{\text {b }}$ Takuya Takeda, MS, ${ }^{\text {a }}$ Kenji Tanimoto, MS, ${ }^{\text {a }}$ Tomonori Sawada, MS, ${ }^{\text {a }}$ and Koichi Shinkoda, PhD ${ }^{\text {a }}$

## Abstract

- Assessment of movement patterns during lifting (0,30,60,90 deg) and unloaded trunk flexion and extension
- 3-dimensional motion analysis system (Vicon Motion Systems)
$\triangleright$ lift a box containing a $7.5-\mathrm{kg}$ weight from half the height of their shank to half the height of their thigh at a comfortable speed


The definition of KFA and the processing flow of real-time feedback. GT, greater trochanter; KFA, knee flexion angle; LCM: lateral condyle of the tibia; LEF: lateral epicondyle of the femur; LM: lateral malleolus.



46 Flex-Ext posture


- The beginning and end of lifting were detected using the velocity of the markers pasted on the object that was lifted


- We detected the start and end of trunk extension from
- full unloaded flexion using the vertical coordinate of the
- COM

Coordinates of $\mathrm{COM}_{\text {ver }}$ during trunk movement



## Maximum flexion angle



|  | Contents lists available at ScienceDirect | Applied Ergonomics |
| :---: | :---: | :---: |
|  | Applied Ergonomics |  |
| ELSEVIER | journal homepage: http://www.elsevier.com/locate/apergo |  |

Changes in kinematics and work physiology during progressive lifting in healthy adults

Hendrik.J. Bieleman ${ }^{\text {a, }{ }^{*}}$, Noortje.H.M. Rijken ${ }^{\text {a }}$, Michiel.F. Reneman ${ }^{\text {b }}$, Frits.G.J. Oosterveld ${ }^{\text {a }}$, Remko Soer ${ }^{\text {a, }}$

${ }^{3}$ Saxion University of Applied Sciences, Faculty of Health and Movement, Enschede, the Netherlands
University of Groningen, University Medical Center Groningen, Department of Rehabilitation Medicine, Groningen, the Netherlands
${ }^{\text {E University }}$ of Groningen, University Medical Center Groningen, Pain Center, Groningen, the Netherlands

- The objective: to test progression of changes in kinematics and work physiology during progressive lifting in healthy adults.
- EMG, Movement pattern analysis, Hear Rate
- Eight infrared cameras (Vicon Vantage V5, 100 frames per second, Vicon Motion Systems, Ltd.,Oxford, UK) and two video cameras (Vicon Bonita 720c, 120 Hz , Vicon)
- Four markers were placed on the bony landmarks of C7, T10 and both PIIS.
- The angle between the line C7-T10 and the line PIIS-Th10 was presented.
- maximal extension angles during the sets were recorded to express posture of the spine.


Coash Angletctaven


Rotate Right Ctrl+Shift++
Rotate the page view 90 degrees
1 Ergonomics

A kinematic comparison of gait with a backpack versus a trolley for load carriage in children

- Aims: evaluate gait kinematics of the lower limbs and thorax in children by first comparing various weights on a backpack or a trolley to unloaded walking and then comparing the backpack to the trolley condition directly with matched loads.

- A 3D-motion capture system (Qualisys AB, Göteborg, Sweden)
- different loads conditions: unloaded walking (as control), pulling a school trolley or carrying a backpack, both with $10 \%$, $15 \%$, and 20\% BW loads.

Sagittal plane

## — No bag <br> THORAX <br> Trolley 10\% <br> $\qquad$ Backpack 10\% -Trolley 15\% ——Backpack 15\% —— Trolley 20\% ——Backpack 20\%

Transverse plane



## HIP

Sagittal plane


Transverse plane


## BMC Musculoskeletal Disorders

## Research article

## Open Access

# Lower extremity joint kinetics and lumbar curvature during squat and stoop lifting <br> Seonhong Hwang ${ }^{1}$, Youngeun Kim ${ }^{2}$ and Youngho Kim*3 

Address: ${ }^{1}$ Department of Biomedical Engineering, Yonsei University Graduate School, Wonjusi, Gangwon-do, South Korea, ${ }^{2}$ Department of Mechanical Engineering, Dankook University, Seoul, South Korea and ${ }^{3}$ Department of Biomedical Engineering and Institute of Medical Engineering, Yonsei University, Seoul, South Korea
Email: Seonhong Hwang - shhwang@yonsei.ac.kr; Youngeun Kim - yekim@dankook.ac.kr; Youngho Kim* - younghokim@yonsei.ac.kr

* Corresponding author
جهتثبت نام به سايت زير مراجعه فرماييد.
$\because$ www.ark-safety.com
$\bullet \cdot \bullet$


## THANKS!

## Any questions?

You can find me at

- @HRMpt
- hrmokhtarinia@yahoo,com

