

HELLO!

l am HR Mokhtarinia

I am here because I love to give presentations.

You can find me at:

@HRMpt

hrmokhtarinia@yahoo.com

Motion Analysis Indications in Ergonomics

land

- Basic concepts of Kinematics
- Variables
- Bioinstrumentation
- Data gathering
- Data analysis
- Provide study samples

pul

UNI

(m)

UN

Rigid Body Mechanic

Basic Kinematic Concepts

- Variables for Describing Motion
- Reference Systems for Describing Motion of the Human Body and Its Segments
- Spatial and temporal characteristics
 - Spatial (where, how far, what direction)
 - Temporal (how long, how fast,)
- Qualitative or quantitative
- ▶ Linear & angular motion

Kinematic Variables

- ▶ Time
- ▶ Position
- Displacement & distance
- ▶ Velocity & speed
- ▹ Acceleration

Time – Temporal Analysis

- ▶ WHEN?
- ▶ HOW OFTEN?
- ▶ IN WHAT ORDER?
- ▶ HOW LONG?

- Most basic analysis
- Examples:
 - Cadence
 - Stride time
 - Temporal patterning

Time – Temporal Analysis

Position Analysis

- ▶ Where?
- position location in space relative to some reference point
- Linear position (s)
 - ▶ x,y,z coordinates
- ▶ Angular position (図)
 - Angle relative to the zero degree
- Units (meter or degree)

Lumbar spine curvatures during squat and stoop lifting. Lumbar curvature was changed from the kyphosis to the lordosis about 50% in the squat lifting, and 60% in the stoop lifting regardless of weights.

Displacement & Distance

- ▶ Displacement ($\Delta s, \Delta \theta$)
 - ▶ Final change in position
 - Vector quantity
 - Angular or transitional
- ▶ Distance ($\Delta p, \phi$)
 - ▶ Sum of all changes in position
 - Scalar quantity
- ▶ units (m, °)

Displacement (motion): 5 km to the northeast Distance: 7 km

Velocity & Acceleration

HOW FAST?

- Velocity (v, ω)
 - Vector quantity
 - ► △position ÷ time
 - Units (m·s⁻¹, °·s⁻¹)

HOW QUICKLY IS VELOCITY CHANGING?

- Acceleration (a, α)
 - Vector quantity
 - ► ∆velocity ÷ time
 - ► Units (m·s⁻², °·s⁻²)
 - Insight into forces/torques

12 Reference Systems: Linear

origin is fixed in space **π/2 rad** 90° 1⁄4 rev **180° 0**° π rad 2π rad 1/2 rev 1 rev **270° 3**π**/**2 rad

³/₄ rev

Angular: Absolute Reference Systems

٧/ كفش ارك

Angular: Relative Reference Systems

- Relative segment to adjacent segment
- Angle between two segment
- In ab.ref zero point is fixed but in rel.ref may be not

What we see in the LAB

Bio-instruments for Motion analysis

Instruments History

- Motion tracking or motion capture started as a photogrammetric analysis in the 1970s
- Since the 20th century the performer has to wear markers near each joint to identify the motion by the positions or angles between the markers.
- Acoustic, inertial, LED, magnetic or reflective markers, or combinations
- Optical systems

Instruments History

- Photography
- Motion trackers
- Motion analysis systems or Tracking or motion capture
- Optical systems
- Goniometers
- Electrogoniometers
- Accelerometres

Optical Motion Analysis systems

- Data captured from sensors to triangulate the 3D position of a subject between two or more cameras
- These systems produce data with three degrees of freedom for each marker,
- Typically a system will consist of around 2 to 48 cameras.
- Markers
 - Active: one LED at a time very quickly or multiple LEDs
 - Passive: markers coated with a retroreflective material

Data gathering procedures with Motion Analysis systems

Motion Analysis LAB

Data Gathering Procedures

- Calibrations
- Landmark Placement
- Data gathering
- Data reduction and Clear
- Modeling
- Calculating the angles

Calibration

- Statics calibration
- Dynamic Calibration

https://www.youtube.com/watch?v=nZsxehVIz9E

26 Landmark Placement

angeli Andre All

5							SLL - Excel						Ā	- 0	
Hom	e Insert	Page Layout	Formulas [Data Review	v View I	Foxit PDF	Tell me what ye	ou want to do						∕}‡ Sh	a
४ ► -	alibri •	11 A A	=	= **	• 📝 Wrap Te	ext G	eneral	•					A Z Y	P	
*	B <i>I</i> <u>∪</u> ·	- 🔗 - 🗛	• = =	• •	🔛 Merge 8	k Center	\$~% 9	€.0 .00 C	onditional Forn prmatting • Tal	nat as Cell ple - Styles -	Insert Delet	e Format	Filter • Se	elect -	
ard 🕞	Font	t	G.	Alignm	ent	Ea.	Number	Es.	Style	S	Cells		Editing		
*	: × •	fx Tim	ie:												
А	В	С	D	E	F	G	Н	I	J	K	L	Μ	Ν	0	
Time:	14:04:43	3													
Гуре:	dynamic														
Descripti	on:														
Notes:															
IRAJECT															
10				1.71.0			DDCI						DACI		
Field #	V N	v	7	v	V	7	v	V	7	LPSI V	v	7	KASI V	v	-
rielu #	^ 1 _//7 6081	1	670 7376	^ _780 2223	1	664 8265	^ _565.4009	132 9/0/	L 1037 247	^ _655 8381	1	1033 /51	^ _/183 1807	57 50581	2
	2 -447 6786	-26.18679	679 606	-789 2759	-39 89475	664 7414	-565 5568	-132.0404	1036 992	-656 0163	-137 5402	1033,401	-483 2029	58 15046	
	3 -117 7167	7 -25 58565	679 / 80/	-789 3262	-39 21095	664 6612	-565 7033	-131 /1997	1036 7/8	-656 18/3	-136 796	1033.302	-483.2023	58 77308	
	4 -447 8124	-25.56505	679 3606	-789 3732	-38 55714	664 5859	-565 8406	-130 823	1036 517	-656 3421	-136 0833	1033.10	-483 2337	59 37366	
	5 -447.8757	-24.46175	679,2469	-789,417	-37.93334	664.5154	-565.9687	-130,1755	1036,297	-656.4897	-135.402	1032,898	-483.2512	59,9522	
	6 -447.9366	6 -23.93903	679.139	-789.4576	-37.33957	664,4499	-566.0875	-129.5573	1036.088	-656.6271	-134.7523	1032.777	-483.2702	60.50865	
SLL			670 0271	-790 /0/0	_26 7750	661 3803	-566 1060	-128 0683	1035 803	-656 75/12	_12/ 12/1	1032 66/	-183 2006	61 0/202	•

Check the Data

- Repetition Trials
- Missing values
- Interpolation for miss data if possible
- Data reduction and clear data

		5								SLL - Excel						Ā	- //	
	Fil	e	Home Ir	nsert F	Page Layout	Formulas D	Data Review	v View	Foxit PDF) Tell me what y	ou want to do						8) + Shar
20	Î	∛	Calibri	* *	11 A A	=	≡ ≫· ▶¶	• 🗬 Wrap Te	ext G	eneral	•					A Z T	ρ	
30	Paste	e 💉	B <i>I</i>	Ū-	- 🔗 - 🗛	• = =	• •	😝 Merge 8	& Center 🔹	\$~% •	€.0 .00 C	onditional Forn ormatting - Tal	nat as Cell ple - Styles -	Insert Delete	e Format	Filter • Se	nd & elect -	
	Clipl	board	ž	Font	r	ŝ	Alignm	ent	L2	Number	يوًا.	Style	s	Cells		Editing		
کفشارک به به مواد	A3		•	×	fx Tim	e:												
		A	1	В	С	D	E	F	G	Н	I	J	К	L	Μ	Ν	0	
	3	Time:	1	4:04:43														
- Constraint	4	Type:	dyr	namic														
	5	Des Ca	$\frac{11}{I} = 11$	· A /	A\$-%9													
	6 7	NO1 P			.00 →.0 ▼													
	7		, Cu <u>t</u>															
	9		<u>С</u> ору															
	10	• - ĉ	Paste Opt	ions:			LTHI			RPSI			LPSI			RASI		_
	11	Fiel	Ċ		Y	Z	Х	Y	Z	Х	Y	Z	Х	Y	Z	Х	Y	Z
	12		Paste <u>S</u> peo	cial 1	-26.81405	679.7376	-789.2223	-40.60853	664.8265	-565.4009	-132.9404	1037.247	-655.8381	-138.3159	1033.451	-483.1897	57.505	581
	13		Insert	6	-26.18679	679.606	-789.2759	-39.89475	664.7414	-565.5568	-132.2055	1036.992	-656.0163	-137.5402	1033.302	-483.2029	58.150)46
	14		<u>D</u> elete	7	-25.58565	679.4804	-789.3262	-39.21095	664.6612	-565.7033	-131.4997	1036.748	-656.1843	-136.796	1033.16	-483.2176	58.773	308
	15		Clear Co <u>n</u> t	tents 1	-25.01063	679.3606	-789.3732	-38.55714	664.5859	-565.8406	-130.823	1036.517	-656.3421	-136.0833	1033.025	-483.2337	59.373	366
	16	=	Eormat Ce	lls 7	-24.46175	679.2469	-789.417	-37.93334	664.5154	-565.9687	-130.1755	1036.297	-656.4897	-135.402	1032.898	-483.2512	59.95	522
	17		Row Heigh	nt 6	-23.93903	679.139	-789.4576	-37.33957	664.4499	-566.0875	-129.5573	1036.088	-656.6271	-134.7523	1032.777	-483.2702	60.508	365
	19	•	Hide	5	_ 12 ///052	ь /u na71	_ /20 /10/10	_36 //50	66/1 2207	-566 1060	-1.78 0683		-656 /5/2	_12/112/11	1033 66/		- 61 M	

Interpolation (Linear)

(+)

4

- + 10%

四 -1

1

A Share

~

(
1	
(

	5	ð +		I	nterpolation	Sample - Exc	cel		Cha	rt Tools		II.			
File	e Hom	e Insert	Page Lay	out Forr	nulas Da	ta Reviev	w View	Foxit PDF	Design	Format	ਊ Tell m	e what you wa	ant to do		
Ê	<mark>∛</mark> -	alibri (Body)	• 10 •	Ă	= .	- M	🔹 🗬 Wrap	o Text	General		×	III (
Paste	~	BI	J - 🖽 - 🚄	• <mark>A</mark> ·		()	⇔ Merg	je & Center	- \$ - %	9 €. 0 .00	.00 ⇒.0 Fo	onditional For	rmat as Cell able Styles	Insert	Dele
Clipk	oard 🕞		Font	rs.		Alignn	nent			Number	G.	Sty	les		Cell
Char	2 -	: ×	$\checkmark f_X$												
	А	В	С	D	E	F	G	Н	1	J	К	L	М	Ν	
227	216	-439.192	-66.116	680.5879	-785.421	-82.9462	C67 2041	-552 207	-177 509	1046042	_6/1 72	5_105101	10/1 069	081 685	15.9
228	217	-439.431	-63.615	680.4869	-785.402	-80.2244								48 🕇 7	18.6
229	218	-439.666	-61.1243	680.3757	-785.386	-77.5157	50							481 596	21.2
230	219	-439.897	-59.1308	680.2546	-785.371	-74.8213								48 🍼 32	23
231	220	-440.124		680.124	-785.358	-72.1427	0		^					481 172	26.5
232	221	-440.345		679.9845	-785.346	-69.4811	1 - 60	73 109 145 145	61 25 89 80 80 80 80 80 80 80 80 80 80 80 80 80	397 133	577 577 513 549	585 721 757 793	365 301 337 337	48 8	29.:
233	222	-440.561		679.8366	-785.334	-66.838	-50			0,00440				481.337	31.6
234	223	-440.772		679.6809	-785.321	-64.2149					1		1	-481.26	34.:
235	224	-440.976		679.518	-785.307	-61.6136	-100					/		481.176	36.5
236	225	-441.173		679.3484	-785.292	-59.0357		\ /						481.084	38.9
237	226	-441.364		679.1729	-785.274	-56.483	-150							480.983	41.2
238	227	-441.546		678.9922	-785.254	-53.9576	-							480.873	43.5
239	228	-441.721		678.8069	-785.231	-51.4615	-200							480.754	45.8
240	229	-441.888		678.6179	-785.204	-48.9969	-							480.625	47.9
241	230	-442.047		678.4257	-785.174	-46.5662	-250							480.486	50.:
242	231	-442.196		678.2312	-785.139	-44.1716	0,000.0440	JJJ./ 2J	1-0.550	1000()01	07J.LL	, 147.303	1031.000	080.336	52.:
243	232	-442.337		678.0351	-785.1	-41.8158	665.0947	-555.882	-138.831	1034.586	-645.43	2 -145.786	1030.984	-480.176	54.2
244	233	-442.469		677.8383	-785.056	-39.5015	664.8397	-556.038	-136.756	1033.889	-645.63	1 -143.651	1030.284	-480.006	56.:
245	234	-442.592		677.6414	-785.007	-37.2312	664.5804	-556.19	-134.734	1033.2	-645.82	4 -141.567	1029.591	-479.825	58.(
	Shee	t1 🕂										∃ ∢			

/	
5	
(

																		Ζ	١J
	्र ले	•						In	nterpolation	Sample - Exce	əl		V	:	=	= v	· +		-
File	Home	Insert	Page Lay	out For	mulas Da	ta Revie	w View	Foxit PDF	ਊ Tell m	e what you w	ant to do		<i>y</i>	l+1	L	<i>y</i>	l	/	11
1	8		- 11	ÂĂ				Text	General								71	_ _	ער
Paste	•	2 7 1	L. M. 2					0. 6	¢ o	/ a €.0	.00 Co	nditional For	mat as Cell	Insert	Delete For	mat	Sort & Fin	d &	
, asto	¥		2			5 7	i merg	e & Center	·	o > .00	⇒.0 For	matting Ta	able - Styles	* ÷		· 🦉 ·	Filter Sele	ect *	
Clipboa	rd 5		Font	Fx.		Alignn	nent			Number		Sty	es		Cells		Editing		^
AVERAG	θE -	: ×	✓ fx	=C229+	+(<mark>(C258-C22</mark>	9)/(A258-A	229 <mark>)</mark>)												^
	А	В	С	D	E	F	G	н	1	J	К	L	М	Ν	0	Р	Q	R	
227	216	-439.192	-66.116	680.5879	-785.421	-82.9462	667 00/1	-553 307	-177 508	1046 042	-6/1 735	-185 101	10/1 069	-481.685	15.90278	1010.796	-472.019	-60.341	5(
228	217	-439.431	-63.615	680.4869	-785.402	-80.2244								481.637	18.61538	1011.501	-472.1	-58.2175	1
229	218	-439.666	-61.1243	680.3757	-785.386	-77.5157								481.586	21.29473	1012.173	-472.182	-56.1018	5(
230	219	-439.897	=C229+((C	680.2546	-785.371	-74.8213	50 —							481.532	23.9387	1012.81	-472.264	-53.9957	5(
231	220	-440.124		680.124	-785.358	-72.1427	0							481.472	26.54519	1013.414	-472.347	-51.901	. 5(
232	221	-440.345		679.9845	-785.346	-69.4811		73 15 31	1 12 22 23 13	2 6 8 6 5	113	8 33 21 53	55 37 73	481.408	29.11217	1013.986	-472.431	-49.8194	5(
233	222	-440.561		679.8366	-785.334	-66.838	50	1 2 2 2 2	5 5 6 6 6 6	0 6 7 9 0	0 0 2 7	89 7 7 87 87 87 87 80 80 80 80 80 80 80 80 80 80 80 80 80	8 6 6 6	481.337	31.63763	1014.526	-472.515	-47.7529	5(
234	223	-440.772		679.6809	-785.321	-64.2149	-50		(\land)					-481.26	34.11965	1015.035	-472.599	-45.7034	ł
235	224	-440.976		679.518	-785.307	-61.6136	-100							481.176	36.55632	1015.513	-472.684	-43.6728	5(
236	225	-441.173		679.3484	-785.292	-59.0357	-100	\ /						481.084	38.94579	1015.961	-472.768	-41.6631	. 5(
237	226	-441.364		679.1729	-785.274	-56.483	-150							480.983	41.28628	1016.381	-472.852	-39.6762	5(
238	227	-441.546		678.9922	-785.254	-53.9576	150							480.873	43.57604	1016.772	-472.936	-37.7143	5(
239	228	-441.721		678.8069	-785.231	-51.4615	-200	$\mathbf{\nabla}$						480.754	45.81334	1017.136	-473.019	-35.7794	4 1
240	229	-441.888		678.6179	-785.204	-48.9969	200							480.625	47.99656	1017.475	-473.101	-33.8735	5(
241	230	-442.047		678.4257	-785.174	-46.5662	-250							480.486	50.12407	1017.788	-473.182	-31.9987	5(
242	231	-442.196		678.2312	-785.139	-44.1716	000.0770	333.723	1-0.550	1033.231	UTJ.221	147.303	1031.000	480.336	52.19434	1018.077	-473.261	-30.1572	5(
243	232	-442.337		678.0351	-785.1	-41.8158	665.0947	-555.882	-138.831	1034.586	-645.432	-145.786	1030.984	-480.176	54.20586	1018.344	-473.338	-28.351	5(
244	233	-442.469		677.8383	-785.056	-39.5015	664.8397	-556.038	-136.756	1033.889	-645.631	-143.651	1030.284	-480.006	56.15721	1018.588	-473.412	-26.5822	5(
245	234	-442.592		677.6414	-785.007	-37.2312	664.5804	-556.19	-134.734	1033.2	-645.824	-141.567	1029.591	-479.825	58.04702	1018.812	-473.484	-24.8531	5(-
	Sheet	1 🕂									:	4							•
Edit															- FFF		-		1000/

へ 切》 🏆 🐿 🎫 ENG 12:16 PM 11/30/2021

 \Box

= 🗅 🍺 🌖 🖬

.

	5	Ç	÷								Inte	erpolation Sa	mple -	Excel					\mathbf{O}			a - (٥	×
File		Home	Inse	rt I	Page Layou	ıt F	ormulas	Data	Review	View	Foxit PDF	ਊ Tell me	what yo	ou want	to d	0							∕₽ sł	hare
Paste	- 	Calib B	ri I	· U·	11 • A	Ă A				Vrap	o Text je & Center 🔹	General \$ - %	9	€.0 . .00 →	•	Conditional Format as Cell Formatting [×] Table [×] Styles [×]	Insert	Delete	Format	∑ . ↓.	A Sort & Filter *	Find & Select *		
Clipboar	d	5		Font		Fa			Alignmer	nt	G.	N	lumber		Б	Styles		Cells			Editing			^
C230		•	×	~	fx	=C22	9+((C25	8-C229)/	(A258-A22	9))														^

	A	B	C	D	E	F	G	H	1	J	K	L	M	N	0	P	Q	R	S	T	U	V	W	X	Y	Z	AA	AB	AC	AD	AE
229	218	-439.666	-61.1243	680.3757	-785.386	-77.5157	50							481.586	21.29473	1012.173	-472.182	-56.1018	509.0411	-442.375	176.7158	1165.255	-812.875	169.5437	1177.164	-454.436	-94.2685	332.2801	-777.069	-103.755	325.32
230	219	-439.897	-59.1308	680.2546	-785.371	-74.8213	50							481.532	23.9387	1012.81	-472.264	-53.9957	508.8512	-441.282	174.3992	1166.925	-813.899	166.7918	1178.699	-454.63	-92.9216	332.0821	-776.927	-102.342	325.19
231	220	-440.124	-57.1672	680.124	-785.358	-72.1427			-					481.472	26.54519	1013.414	-472.347	-51.901	508.6529	-440.21	172.0754	1168.452	-814.912	164.046	1180.097	-454.803	-91.5764	331.8898	-776.781	-100.93	325.05
232	221	-440.345	-55.2352	679.9845	-785.346	-69.4811		312 23		6 8 6 9	12002	12 15 18 9	33 11 23	481.408	29.11217	1013.986	-472.431	-49.8194	508.4463	-439.162	169.7466	1169.84	-815.912	161.3103	1181.36	-454.954	-90.235	331.7043	-776.633	-99.5208	324.91
233	222	-440.561	-53.3367	679.8366	-785.334	-66.838	50			1 X Y Y G 1		F F F 80	88666	481.337	31.63763	1014.526	-472.515	-47.7529	508.2318	-438.142	167.4154	1171.09	-816.898	158.5892	1182.49	-455.083	-88.8995	331.5261	-776.481	-98.1159	324.76
234	223	-440.772	-51.4733	679.6809	-785.321	-64.2149	-50							-481.26	34.11965	1015.035	-472.599	-45.7034	508.01	-437.151	165.0848	1172.205	-817.871	155.887	1183.491	-455.19	-87.5723	331.3561	-776.325	-96.7161	324.60
235	224	-440.976	-49.6467	679.518	-785.307	-61.6136	100	\setminus /					1	481.176	36.55632	1015.513	-472.684	-43.6728	507.7813	-436.191	162.7578	1173.188	-818.828	153.2087	1184.365	-455.276	-86.2556	331.1945	-776.167	-95.3224	324.45
236	225	-441.173	-47.8586	679.3484	-785.292	-59.0357	-100	\setminus /						481.084	38.94579	1015.961	-472.768	-41.6631	507.5463	-435.266	160.4382	1174.043	-819.769	150.5592	1185.117	-455.34	-84.9518	331.0419	-776.006	-93.9361	324.28
237	226	-441.364	-46.1108	679.1729	-785.274	-56.483	-150					/		480.983	41.28628	1016.381	-472.852	-39.6762	507.3054	-434.375	158.1297	1174.774	-820.694	147.9437	1185.751	-455.384	-83.6633	330.8984	-775.842	-92.5586	324.11
238	227	-441.546	-44.4048	678.9922	-785.254	-53.9576	150					/		480.873	43.57604	1016.772	-472.936	-37.7143	507.0595	-433.52	155.8364	1175.385	-821.603	145.3674	1186.272	-455.408	-82.3923	330.7641	-775.675	-91.1911	323.94
239	228	-441.721	-42.7423	678.8069	-785.231	-51.4615	-200							480.754	45.81334	1017.136	-473.019	-35.7794	506.809	-432.703	153.5627	1175.882	-822.493	142.8357	1186.685	-455.414	-81.141	330.639	-775.506	-89.8351	323.7
240	229	-441.888	-41.1249	678.6179	-785.204	-48.9969								480.625	47.99656	1017.475	-473.101	-33.8735	506.5547	-431.922	151.3131	1176.27	-823.366	140.3541	1186.996	-455.402	-79.9116	330.5231	-775.335	-88.4922	323.59
241	230	-442.047	-39.5541	678.4257	-785.174	-46.5662	-250							480.486	50.12407	1017.788	-473.182	-31.9987	506.2974	-431.179	149.0921	1176.555	-824.221	137.9281	1187.211	-455.373	-78.7062	330.4159	-775.162	-87.1639	323.41
242	231	-442.196	-38.0313	678.2312	-785.139	-44.1716		JJJ./ 25	170.000	1000.201		147.505	1001.000	480.336	52.19434	1018.077	-473.261	-30.1572	506.0378	-430.472	146.9047	1176.745	-825.057	135.5632	1187.338	-455.33	-77.5264	330.3174	-774.988	-85.8518	323.23
243	232	-442.337	-36.5581	678.0351	-785.1	-41.8158	665.0947	-555.882	-138.831	1034.586	-645.432	-145.786	1030.984	-480.176	54.20586	1018.344	-473.338	-28.351	505.7767	-429.802	144.7554	1176.844	-825.873	133.2648	1187.382	-455.274	-76.3741	330.2269	-774.812	-84.5577	323.05
244	233	-442.469	-35.1358	677.8383	-785.056	-39.5015	664.8397	-556.038	-136.756	1033.889	-645.631	-143.651	1030.284	-480.006	56.15721	1018.588	-473.412	-26.5822	505.5148	-429.165	142.6491	1176.862	-826.67	131.0384	1187.35	-455.206	-75.2509	330.1442	-774.635	-83.2833	322.86
245	234	-442.592	-33.7657	677.6414	-785.007	-37.2312	664.5804	-556.19	-134.734	1033.2	-645.824	-141.567	1029.591	-479.825	58.04702	1018.812	-473.484	-24.8531	505.2531	-428.561	140.5906	1176.804	-827.447	128.8891	1187.251	-455.129	-74.158	330.0687	-774.458	-82.0304	322.68
246	235	-442.705	-32.4493	677.4453	-784.954	-35.0077	664.3178	-556.339	-132.766	1032.522	-646.01	-139.535	1028.905	-479.633	59.87396	1019.017	-473.554	-23.1657	504.9923	-427.988	138.5845	1176.678	-828.203	126.8221	1187.091	-455.043	-73.0968	329.9998	-774.281	-80.8007	322.50
247	236	-442.81	-31.1876	677.2506	-784.895	-32.834	664.0531	-556.484	-130.854	1031.856	-646.189	-137.558	1028.228	-479.432	61.6368	1019.202	-473.62	-21.5222	504.7333	-427.444	136.6353	1176.493	-828.938	124.8422	1186.878	-454.95	-72.0684	329.9371	-774.104	-79.5962	322.32
248	237	-442.905	-29.9819	677.0582	-784.831	-30.713	663.7874	-556.624	-129	1031.203	-646.36	-135.637	1027.562	-479.222	63.33437	1019.371	-473.683	-19.9246	504.477	-426.926	134.7475	1176.256	-829.652	122.954	1186.619	-454.852	-71.0737	329.88	-773.928	-78.4187	322.14
249	238	-442.991	-28.8332	676.8688	-784.762	-28.6474	663.5217	-556.76	-127.205	1030.564	-646.524	-133.775	1026.909	-479.002	64.96556	1019.524	-473.742	-18.3751	504.2242	-426.431	132.9252	1175.974	-830.344	121.1619	1186.322	-454.751	-70.1138	329.8281	-773.753	-77.2701	321.96
250	239	-443.068	-27.7427	676.6831	-784.688	-26.6405	663.2573	-556.891	-125.473	1029.941	-646.68	-131.974	1026.27	-478.775	66.52934	1019.662	-473.798	-16.8759	503.9758	-425.957	131.1725	1175.656	-831.012	119.4697	1185.994	-454.647	-69.1895	329.7808	-773.58	-76.1522	321.79
251	240	-443.136	-26.7113	676.5019	-784.609	-24.695	662.9952	-557.016	-123.804	1029.335	-646.828	-130.235	1025.646	-478.54	68.02475	1019.786	-473.849	-15.4289	503.7326	-425.502	129.4929	1175.309	-831.657	117.8811	1185.642	-454.542	-68.3015	329.7379	-773.408	-75.0669	321.62
252	241	-443.196	-25.7399	676.3258	-784.525	-22.8141	662.7367	-557.136	-122.2	1028.748	-646.968	-128.561	1025.041	-478.299	69.45092	1019.898	-473.897	-14.0363	503.4956	-425.063	127.89	1174.941	-832.276	116.3991	1185.274	-454.438	-67.4508	329.6989	-773.24	-74.0162	321.45
253	242	-443.248	-24.8295	676.1555	-784.437	-21.0006	662.4829	-557.25	-120.663	1028.181	-647.1	-126.953	1024.454	-478.053	70.80706	1019.998	-473.94	-12.7001	503.2655	-424.637	126.3669	1174.56	-832.87	115.0264	1184.897	-454.335	-66.6379	329.6636	-773.074	-73.0018	321.29
254	243	-443.291	-23.9808	675.9916	-784.345	-19.2575	662.2349	-557.357	-119.195	1027.635	-647.223	-125.414	1023.888	-477.803	72.09245	1020.089	-473.98	-11.4223	503.0432	-424.222	124.9264	1174.171	-833.435	113.7651	1184.516	-454.234	-65.8636	329.6318	-772.912	-72.0256	321.14
255	244	-443.327	-23.1946	675.8348	-784.249	-17.5877	661.9939	-557.458	-117.798	1027.112	-647.338	-123.946	1023.345	-477.549	73.30645	1020.171	-474.015	-10.2047	502.8294	-423.816	123.5709	1173.782	-833.971	112.6168	1184.138	-454.136	-65.1287	329.6032	-772.753	-71.0894	320.9
256	245	-443.356	-22.4715	675.6856	-784.149	-15.9941	661.7609	-557.552	-116.472	1026.613	-647.445	-122.55	1022.825	-477.294	74.44853	1020.245	-474.045	-9.04948	502.6249	-423.419	122.3024	1173.4	-834.475	111.5824	1183.768	-454.042	-64.4337	329.5777	-772.6	-70.1949	320.85
257	246	-443.377	-21.8122	675.5446	-784.045	-14.4794	661.5371	-557.64	-115.22	1026.139	-647.543	-121.228	1022.331	-477.039	75.5182	1020.312	-474.071	-7.9583	502.4305	-423.027	121.1227	1173.029	-834.946	110.6624	1183.412	-453.952	-63.7795	329.5554	-772.451	-69.3439	320.71
258	247	-443.392	-3.312	122	-783.939	-13.0462	661.3235	-557.72	-114.044	1025.692	-647.633	-119.982	1021.863	-476.784	76.5151	1020.375	-474.093	-6.93296	502.2468	-422.642	120.033	1172.675	-835.381	109.8565	1183.075	-453.867	-63.1666	329.5361	-772.307	-68.538	320.58
259	248	-443.4	-2.18594	* :889	-783.83	-11.6973	661.121	-557.793	-112.944	1025.272	-647.715	-118.813	1021.424	-476.532	77.43891	1020.433	-474.11	-5.97516	502.0745	-422.261	119.034	1172.343	-835.778	109.164	1182.76	-453.787	-62.5957	329.52	-772.17	-67.7789	320.46
260	249	-443.403	-1.14042	675.1751	-783.72	-10.4351	660.9308	-557.859	-111.922	1024.881	-647.788	-117.724	1021.014	-476.283	78.2894	1020.487	-474.124	-5.08649	501.9143	-421.887	118.126	1172.036	-836.134	108.5835	1182.472	-453.712	-62.0676	329.5071	-772.038	-67.068	320.35
-	•	Sheet	t1	+															- E 🖣												•

Calculation of angles from data

• Absolute angle

- For each segment two marker is necessary
- Horizontal equal to 0 degree
- All measure is in ccw
- In black line

Absolute Angles:

To determine absolute joint angles, you need to define a reference system first. Here, we will choose the distal joint as our origin (0,0), and calculate the absolute segment (foot, shank, thigh, and trunk) angles from the right horizontal. Mathematically, the absolute angle can be calculated using the following trigonometric relationship:

 $\tan (\theta) = (y_{\text{proximal}} - y_{\text{distal}}) / (x_{\text{proximal}} - x_{\text{distal}})$

taking the inverse tangent of both sides gives you:

 θ = tan ⁻¹ ((y proximal - y distal) / (x proximal - x distal))

Calculation of angles from data

Absolute angle

37

- For each segment two marker is necessary
- Horizontal equal to 0 degree
- All measure is in ccw
- In black line
- Joint angle
- the included angle between the longitudinal axes of two adjacent segments
- Knee ext is when 0 deg flex
- In blue line

 $\theta_{hip} = \theta_{trunk} + (180 - \theta_{thigh})$ $\theta_{knee} = \theta_{shank} + (180 - \theta_{thigh})$ $\theta_{ankle} = \theta_{shank} + (180 - \theta_{foot})$

E		5										Arc tang	g Sample -	- Excel										函 —	٥	×
F	ile	Н	ome	Insert	Page Lay	out Fo	ormulas	Data	Review	View	Foxit PD	F 🖓 Te	ell me wha	t you wa	nt to do	D									∕aµ Sha	are
Pas	te	%	Calibri B	ΙŪ	• <u>11</u> • /	ÂĂĂ		× × × × × × × × × × × × × × × × × × ×	≥	₩rap	o Text le & Center	Gene	eral • % 9	€.0 .00	.00 →.0	<i>Z Z Z Z Z Z Z Z Z Z</i>	al Format as	s Cell	Insert	Delete Fe	ormat	∑ . ↓.	AZT Sort &	Find &		
Cli	pboard	5		Fo	nt	5			Alignmer	nt		5	Numb	er	Б	rormatting	Styles	Styles *	¥	Cells		•	Editing	Select		^
K12	2		*	×	✓ fx	=ATAN	V2(F12-C1	12,E12-B	12)																	^
	А		В	С	D	E	F	G	н	1	J	К	L	М	N	0	Р	Q	R	S		т	U	V	W	
1	SLL																									
2	Date:		40203																							
3	Time:	(0.586609																							
4	Type:	dy	ynamic																							
5	Descrip	tion:																								
7	Notes:																									
0	TRAIEC	TODIE	c																							
0	TRAJEC		3																							
10		100 H.	2 ТШ			RKNE						ARCtang	degree													
11	Field #	X		v	7	Y	v	7				Anctang	degree													
12	i icia ii	1	-447.608	-26.8141	679,7376	-478.385	-27.6172	505.6722				-1.59689	-91,4949													
13		2	-447.679	-26.1868	679.606	-478.416	-27.1458	505.6074				-1.60198	-91.787													
14		3	-447.747	-25.5856	679,4804	-478.449	-26.6945	505.5466				-1.6069	-92.0684													
15		4	-447.812	-25.0106	679.3606	-478.481	-26.2633	505.4897				-1.61162	-92.3391													
16		5	-447.876	-24.4617	679.2469	-478.513	-25.8524	505.4367				-1.61615	-92.5988													
17		6	-447.937	-23.939	679.139	-478.545	-25.4615	505.3877				-1.6205	-92.8476													
18		7	-447.995	-23.4425	679.0371	-478.578	-25.091	505.3427				-1.62464	-93.0853													
19		8	-448.051	-22.9723	678.9412	-478.611	-24.7407	505.3016				-1.6286	-93.3118													
20		9	-448.105	-22.5286	678.8512	-478.643	-24.4108	505.2645				-1.63235	-93.5269													
21		10	-448.156	-22.1114	678.7671	-478.676	-24.1015	505.2314				-1.63591	-93.7307													
22		11	-448.204	-21.7212	678.6891	-478.709	-23.813	505.2023				-1.63926	-93.9229													
23		12	-448.25	-21.3581	678.617	-478.742	-23.5456	505.1771				-1.64242	-94.1035													
24		13	-448.294	-21.0226	678.551	-478.774	-23.2996	505.1561				-1.64536	-94.2723													-
-	•	Sh	eet1	+												•									Þ	

Calculation of velocity

Coordinate and smooth data

$$V = \frac{\Delta X}{\Delta T}$$
 $\Delta X = x_{i+1} - x_i$

This velocity does not represented v at either of sample time.

• So,
$$v_{xi} = \frac{x_{i+1} - x_{i-1}}{2\Delta t}$$

And
$$A_{xi} = \frac{v_{xi+1} - v_{xi-1}}{2\Delta t}$$

Samples: Indication in Ergonomics studies

Relationships Between Trunk Movement Patterns During Lifting Tasks Compared With Unloaded Extension From a Flexed Posture

Yuta Ogata, MS,^a Masaya Anan, PhD,^b Makoto Takahashi, PhD,^b Takuya Takeda, MS,^a Kenji Tanimoto, MS,^a Tomonori Sawada, MS,^a and Koichi Shinkoda, PhD^a

- Assessment of movement patterns during lifting (0,30,60,90 deg) and unloaded trunk flexion and extension
- 3-dimensional motion analysis system (Vicon Motion Systems)
- lift a box containing a 7.5-kg weight from half the height of their shank to half the height of their thigh at a comfortable speed

The definition of KFA and the processing flow of real-time feedback. GT, greater trochanter; KFA, knee flexion angle; LCM: lateral condyle of the tibia; LEF: lateral epicondyle of the femur; LM: lateral malleolus.

کفش ارک منین ارک

Reference

- The displayed knee flexion angle (clockwise rotation
- indicates increased knee flexion angle)

- The beginning and end of lifting were detected using the velocity of the markers pasted on the object that was lifted

- We detected the start and end of trunk extension from
- full unloaded flexion using the vertical coordinate of the
- ► COM

Contents lists available at ScienceDirect

Applied Ergonomics

journal homepage: http://www.elsevier.com/locate/apergo

Changes in kinematics and work physiology during progressive lifting in healthy adults

Hendrik.J. Bieleman^{a,*}, Noortje.H.M. Rijken^a, Michiel.F. Reneman^b, Frits.G.J. Oosterveld^a, Remko Soer^{a, c}

^a Saxion University of Applied Sciences, Faculty of Health and Movement, Enschede, the Netherlands
^b University of Groningen, University Medical Center Groningen, Department of Rehabilitation Medicine, Groningen, the Netherlands
^c University of Groningen, University Medical Center Groningen, Pain Center, Groningen, the Netherlands

- The objective: to test progression of changes in kinematics and work physiology during progressive lifting in healthy adults.
- EMG, Movement pattern analysis, Hear Rate

- Eight infrared cameras (Vicon Vantage V5, 100 frames per second, Vicon Motion Systems, Ltd.,Oxford, UK) and two video cameras (Vicon Bonita 720c, 120 Hz, Vicon)
- Four markers were placed on the bony landmarks of C7, T10 and both PIIS.
- The angle between the line C7–T10 and the line PIIS-Th10 was presented.
- maximal extension angles during the sets were recorded to express posture of the spine.

Rotate Right	Ctrl+Shift++			
Rotate the page clockwise	view 90 degrees	1	Ergonomics	

journal homepage: www.elsevier.com/locate/apergo

A kinematic comparison of gait with a backpack versus a trolley for load carriage in children

E. Orantes-Gonzalez^{a,b,*}, J. Heredia-Jimenez^{a,b}, M.A. Robinson^c

^a Department of Physical Education and Sport, Faculty of Education, Economy & Technology, University of Granada, Ceuta, Spain
^b HubemaLab: Human Behaviour & Motion Analysis Lab. University of Granada, Ceuta, Spain
^c Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, United Kingdom

ARTICLE INFO

ABSTRACT

Aims: evaluate gait kinematics of the lower limbs and thorax in children by first comparing various weights on a backpack or a trolley to unloaded walking and then comparing the backpack to the trolley condition directly with matched loads.

- A 3D-motion capture system (Qualisys AB, Göteborg, Sweden)
- different loads conditions: unloaded walking (as control), pulling a school trolley or carrying a backpack, both with 10%, 15%, and 20% BW loads.

HIP

Motion analysis samples

57

BMC Musculoskeletal Disorders

BioMed Central

Research article

Lower extremity joint kinetics and lumbar curvature during squat and stoop lifting Seonhong Hwang¹, Youngeun Kim² and Youngho Kim^{*3}

Address: ¹Department of Biomedical Engineering, Yonsei University Graduate School, Wonjusi, Gangwon-do, South Korea, ²Department of Mechanical Engineering, Dankook University, Seoul, South Korea and ³Department of Biomedical Engineering and Institute of Medical Engineering, Yonsei University, Seoul, South Korea

Email: Seonhong Hwang - shhwang@yonsei.ac.kr; Youngeun Kim - yekim@dankook.ac.kr; Youngho Kim* - younghokim@yonsei.ac.kr * Corresponding author

THANKS!

Any questions?

You can find me at

- ▶ @HRMpt
- hrmokhtarinia@yahoo,com